วันศุกร์ที่ 4 เมษายน พ.ศ. 2557

Mathematics: Trigonometry(3) - High school


Main Menu

Maths High School
# h1matr3 - Trigonometry(3) 
Solve the equation
Arccos x - Arcsin x =
6




- the rule "Must have" of Mr.Zhang ®
Identity; cos(α + β) =  cosαcosβ - sinαsinβ



Solution
From the problem, take cos both side;
Arccos x  =  Arcsin x  +
6
cos(Arccos x)  =  cos(Arcsin x  +
6
)
x  =  cos(Arcsin x  +
6
)

From identity;
x  =  cos ( 
6
+ Arcsin x )
x  =  cos
6
cosθ - sin
6
sinθ
(∴  Arcsin x = θ)

2
θ
π
2
θ=Arcsinx  
       sinθ=sin(Arcsinx)



 

  
                          



∴ sinθ=x
cos(Arcsinx) = cos θ
                    =




x  = 
-√3
2
( √1-x2) - ½ x

2x  =  -√3 ( √1-x2) -  x
3x  =  -√3 ( √1-x2)
9x2  =  3 ( 1-x2)
3x2  =  ( 1-x2)
4x2  =  1
x2  =  ¼
x  =  (+/-)½

Verify x = ½
Arccos½=Arcsin½+
6
60o=30o+150o
60o=180o →false

Verify x = (-)½
Arccos(-)½=Arcsin(-)½+
6
120o=-30o+150o
120o=120o →right
Ans. x = - ½

วันพฤหัสบดีที่ 3 เมษายน พ.ศ. 2557

Trigonometry highschool


Main Menu

Maths High School
# h1matr2 - Trigonometry 
sin [ tan-1(43) + cos-1 (-1213) ]
Find the value without using the tables or a calculator.

                  Strategy
- The rule "Must have" of Mr.Zhang ® 

Identity; sin(α + β) =  sinαcosβ + cosαsinβ



Solution
Use the identity and inverse properties of Trigonometry;



NameNotationDefinition Domain of xRange
arctangent y=arctan x x=tan y all real numbers -π/2 < y < π/2
arccosine y=arccos x x=cos y -1  ≤  x ≤ 1 0  ≤  y ≤ π

tan-1(43) = arctan(43) =  α
α = arctan(43)
∴  tanα = 43, sinα = 45, cosα = 35

cos-1(-1213) = arccos(-1213) =  β
β = arccos(-1213)
∴  cosβ = -1213,  sinβ = 513


sin [ tan-1(43) + cos-1 (-1213) ] = sin(α + β)
= sinα cosβ + cosα sinβ
=  (45)(-1213) + (35) (513)
  Ans. =  -3365

วันพุธที่ 2 เมษายน พ.ศ. 2557

Trigonometry


Main Menu

Maths High School
# h1matr1 - Trigonometry 
A pole 5 m high is fixed on the top of a tower. The angle of elevation of
the top of the pole observed from a point 'A' on the ground is 60o and the
angle of the depression of the point "A" from the top of the tower is 45o.
Find the height of the tower.




Strategy - the rule "Must have" of Mr.Zhang ® 



Solution
Compute the time to the height of tower by;